в корзину

Корзина покупок
 

СИНТЕТИЧЕСКАЯ МОДЕЛЬ ПРИРОДНОГО КАТАЛИЗАТОРА

СИНТЕТИЧЕСКАЯ МОДЕЛЬ ПРИРОДНОГО КАТАЛИЗАТОРА

СИНТЕТИЧЕСКАЯ МОДЕЛЬ ПРИРОДНОГО КАТАЛИЗАТОРА

Исследователи разработали простой состоящий из двух молекул химический аналог фермента и субстрата, который легко позволяют продемонстрировать фундаментальные принципы биологического катализа.

Новая реакция представляет собой синтетическую модель биологического катализатора, которая позволит изучающим биохимию легче представить и понять, как протекает ферментативный катализ, новая система может не только войти в перечень лабораторных работ для практикума по общей биохимии и ферментативному катализу, но и стать основой для разработки новых биомиметических катализаторов.

 

В 1948 Лайнус Полинг предположил, что работа фермента основана на том, что активный центр фермента связывается более прочно с субстратом, находящимся в переходном состоянии, а десятью годами позже Дэниел Эдвард Кошланд высказал предположение и о том, что активный центр фермента меняет свои геометрические параметры для более прочного связывания с субстратом – эта теория получила название теории взаимно индуцированного стерического соответствия. К сожалению, наглядная демонстрация этих теорий на примере белковых катализаторов не удавалась из-за большого размера и сложной структуры биомолекул.

В новой работе исследователи из лабораторий Джея Сигеля (Jay Siegel) и Фрейзера Штоддарта (Fraser Stoddart) демонстрируют простой аналог, позволяющий продемонстрировать ключевые особенности биологического катализа.

 

В качестве модели активного центра фермента исследователи использовали прямоугольный циклофан ExBox, вещество, ключевым элементом которого являются бипиридиновые структуры. В качестве субстрата был выбран полициклический ароматический углеводород кораннулен, форма которого напоминает чашу, а в качестве модельной реакции – реакция инверсии кораннулена. В ходе реакции кораннулен связывается с полостью ExBox таким образом, что чаша кораннулена слегка уплощается, а полость ExBox незначительно увеличивается для более оптимального связывания – таким образом и «фермент», и «субстрат» меняют свою форму для более оптимального взаимодействия. При связывании ExBox-кораннулен с моделью фермента взаимодействует несколько более уплощенное переходное состояние кораннулена, в результате чего в присутствии ExBox скорость процесса инверсии кораннулена возрастает десятикратно.

 

Эта последовательность процессов, равно как и величины энергий связывания кораннулена в основном (чашеобразном) и возбужденном (уплощенном) состояниях была подтверждена с помощью методов ЯМР, кристаллографии, изотермической калориметрии. Полученные эмпирическим путем данные хорошо соответствовали результатам квантово-химических расчетов.

 

Как отмечает Сигель, исследователи смогли продемонстрировать на исключительно простой системе работу принципов, характерных для куда более сложных биологических систем, а также определить все параметры, ключевые для оптимального связывания катализатор-субстрат.

Комментируя результаты исследования [2], Лоуренс Скотт (Lawrence Scott) из Бостонского Колледжа (США) заявляет, что простота новой системы позволяет надеяться на то, что в перспективе она может стать классической иллюстрацией теоретических концепций ферментативного катализа.

 

 

Истоники: [1] Nat. Chem., 2014, 6, 222 (DOI: 10.1038/nchem.1842); [2] Nat. Chem., 2014, DOI: 10.1038/nchem.1872

О КОМПАНИИ

Союзхимпром ЗАО "Союзхимпром" более 15 лет работает в области комплексного оснащения химических и эколого-аналитических лабораторий, предприятий разного профиля, государственных служб охраны окружающей среды и санитарного контроля Урала, Сибири и Дальнего Востока.Все что Вам нужно. Основное преимущество новосибирского ЗАО "Союзхимпром" — комплексность поставки.

КОНТАКТЫ

  • 8-383-289-98-09; 289-98-08; 279-98-76; 279-97-52
  • shp-nsk
  • 630015, Россия, Новосибирск, ул. Королева 40, корпус 87

Новый сайт лабораторного стекла ЗАО СоюзХимПром! Работает на SHP
Союзхимпром - лабораторное оборудование © 2024